Skip to main content
Log in

Estrogen mitogenic action. III. Is phenol red a “red herring”?

  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The reported estrogenic action of phenol red and/or its lipophilic contaminants has led to the widespread use of indicator-free culture medium to conduct endocrine studies in vitro. Because we have recently developed methods to measure large-magnitude estrogen effects in the tissue culture medium containing phenol red, we concluded that the indicator issue required further evaluation. To do this, we selected nine estrogen receptor positive (ER+) cell lines representing four target tissues and three species. We investigated phenol red using five different experimental protocols. First, 17β-estradiol (E2) responsive growth of all nine ER+ cells lines was compared in the medium with and without the indicator. Second, using representative lines we asked if phenol red was mitogenic in the indicator-free medium. The dose-response effects of phenol red were compared directly to those of E2. Third, we asked if tamoxifen-inhibited growth equally in phenol red-containing and indicator-free medium. This study was based on a report indicating that antiestrogen effects should be seen only in phenol red-containing medium. Fourth, we asked if phenol red displaced the binding of 3H-E2 using ER+ intact human breast cancer cells. Fifth, we compared E2 and phenol red as inducers of the progesterone receptor using a human breast cancer cell lines. All the experiments presented in this report support the conclusion that the concentration of phenol red contaminants in a standard culture medium available today is not sufficient to cause estrogenic effects. In brief, our studies indicate that the real issue of how to demostrate estrogenic effects in culture resides elsewhere than phenol red. We have found that the domonstration of sex steroid-mitogenic effects in culture depends upon conditions that maximize the effects of a serum-borne inhibitor(s). When the effects of the inhibitor are optimized, the presence or absence of phenol red makes no everyday difference to the demonstration of estrogen mitogenic effects with several target cell types from diverse species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allegra, J. C.; Lippman, M. E. Growth of a human breast cancer cell line in serum-free hormone-supplemented medium. Cancer Res. 38:3823–3829; 1978.

    PubMed  CAS  Google Scholar 

  • Allegra, J. C.; Lippman, M. E. The effects of 17β estradiol and tamoxifen on the ZR-75-1 human breast cancer cell line in defined medium. Eur. J. Cancer 16:1007–1015; 1980.

    PubMed  CAS  Google Scholar 

  • Amara, J. F.; Dannies, P. S. 17β-estradiol has a biphasic effect on GH cell growth. Endocrinology 112:1131–1143; 1983.

    Google Scholar 

  • Arteaga, C. L.; Coronado, E.; Osborne, C. K. Blockade of the epidermal growth factor inhibits transforming growth factor α-induced but not estrogen-induced growth of hormone-dependent human breast cancer. Mol. Endocrinol. 2:1064–1069; 1988a.

    PubMed  CAS  Google Scholar 

  • Arteaga, C. L.; Kitlen, L. J.; Coronado, E. B., et al. Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J. Clin. Invest. 84:1418–1423; 1989.

    PubMed  CAS  Google Scholar 

  • Arteage, C. L.; Tandon, A. K.; Von Hoff, D. D., et al. Transforming growth factor β: potential autocrine growth inhibitor of estrogen receptor-negative human breast cancer cells. Cancer Res. 48:3898–3904; 1988b.

    Google Scholar 

  • Barnes, D. Serum-free animal cell culture. BioTechniques 5:534–542; 1987.

    CAS  Google Scholar 

  • Barnes, D.; McKeehan, W. L.; Sato, G. H. Cellular endocrinology: integrated physiology in vitro. In Vitro Cell. Dev. Biol. 23:659–662; 1987.

    PubMed  CAS  Google Scholar 

  • Barnes, D.; Sato, G. Growth of a human mammary tumour cell line in a serum-free medium. Nature (Lond) 281:388–389; 1979.

    Article  CAS  Google Scholar 

  • Barnes, D. W., Sirbasku, D. A., Sato, G. H., ed. Cell culture methods for molecular and cell biology, vol. 1. Methods for preparation of media, supplement and substrata for serum-free animal cell culture. New York: Liss/Wiley; 1984a:3–353.

    Google Scholar 

  • Barnes, D. W.; Sirbasku, D. A.; Sato, G. H., ed. Cell culture methods for molecular and cell biology, vol. 2. Methods for serum-free culture of cells of the endocrine system. New York: Liss/Wiley; 1984b:1–255.

    Google Scholar 

  • Barnes, D. W., Sirbasku, D. A.; Sato, G. H., ed. Cell culture methods for molecular and cell biology, vol. 3. Methods for serum-free culture of epithelial and fibroblastic cells. New York: Liss/Wiley; 1984c:3–291.

    Google Scholar 

  • Barnes, D. W.; Sirbasku, D. A.; Sato, G. H., ed. Cell culture methods for molecular and cell biology, vol. 4. Methods for serum-free culture for neuronal and lymphoid cells. New York: Liss/Wiley; 1984d:3–263.

    Google Scholar 

  • Berthois, Y.; Katzenellenbogen, J. A.; Katzenellenbogen, B. S. Phenol red in tissue culture media is a week estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA 83:2496–2500; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Bindal, R. D.; Carlson, K. E.; Katzenellenbogen, B. S., et al. Lipophilic impurities, not phenolsulfonphthalein, account for the estrogenic activity in commercial preparations of phenol red. J. Steroid Biochem. 31:287–293; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Bindal, R. D.; Katzenellenbogen, J. A. Bis(4-hydroxyphenyl)[2-(phenoxysulfonyl)phenyl]methane: isolation and structural elucidation of a novel estrogen from commercial preperations of phenol red (phenolsulfonphthalein). J. Med. Chem. 31:1978–1983; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Bursch, W.; Liehr, J. G.; Sirbasku, D. A., et al. Control of cell death (apoptosis) by diethylstilbestrol in an estrogen dependent kidney tumor. Carcinogenesis 12:855–860; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Butler, W. B.; Kelsey, W. H.; Goran, N. Effects of serum and insulin on the sensitivity of human breast cancer cell line MCF-7 to estrogen and antiestrogens. Cancer Res. 41:82–88; 1981.

    PubMed  CAS  Google Scholar 

  • Butler, W. B.; Kirkland, W. L.; Gargala, T. L., et al. Steroid stimulation of plasminogen activator production in a human breast cancer cell line (MCF-7). Cancer Res. 43:1637–1641; 1983.

    PubMed  CAS  Google Scholar 

  • Castagnetta, L. A.; Miceli, M. D.; Sorci, C. M. G., et al. Growth of LNCaP human prostate cancer cells is stimulated by estradiol via its own receptor. Endocrinology 136:2309–2319; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Chalbos, D.; Vignon, F.; Keydar, I., et al. Estrogens stimulate cell proliferation and induce secretory proteins in a human breast cancer cell line (T47D). J. Clin. Endocrinol. Metab. 55:276–283; 1982.

    PubMed  CAS  Google Scholar 

  • Chamness, G. C.; McGuire, W. L. Scatchard plots: common errors in correction and interpretation. Steroids 26:538–542; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, R.; Brunner, N.; Katz, D., et al. The effects of constitutive expression of transforming growth factor α on growth of MCF-7 human breast cancer cells in vitro and in vivo. Mol. Endocrinol. 3:372–380; 1989.

    PubMed  CAS  Google Scholar 

  • Danielpour, D.; Riss, T. L.; Ogasawara, M., et al. Growth of MTW9/PL2 estrogen-responsive rat mammary tumor cells in hormonally defined serum-free media. In Vitro Cell. Dev. Biol. 24:42–52; 1988.

    PubMed  CAS  Google Scholar 

  • Danielpour, D.; Sirbasku, D. A. New perspectives in hormone-dependent (responsive) and autonomous mammary tumor growth: role of autostimulatory growth factors. In Vitro 20:975–980; 1984.

    PubMed  CAS  Google Scholar 

  • Darbre, P. D.; Curtis, S.; King, R. J. B. Effects of estradiol and tamoxifen on breast cancer cells in serum-free culture. Cancer Res. 44:2790–2793; 1984.

    PubMed  CAS  Google Scholar 

  • Darbre, P.; Yates, J.; Curtis, S., et al. Effect of estradiol on human breast cancer cells in culture. Cancer Res. 43:349–354; 1983.

    PubMed  CAS  Google Scholar 

  • Devleeschouwer, N.; Body, J. L.; Legros, N., et al. Growth factor-like activity of phenol red preparations in the MCF-7 breast cancer cell line. Anticancer Res. 12:789–794; 1992.

    PubMed  CAS  Google Scholar 

  • Devleeschouwer, N.; Legros, N.; Olea-Serrano, N., et al. Estrogen conjugates and serum factors mediating the estrogenic trophic effect on MCF-7 cell growth. Cancer Res. 47:5883–5887; 1987.

    PubMed  CAS  Google Scholar 

  • Dickson, R. B.; Lippman, M. E. Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocrine Rev. 8:29–43; 1987.

    CAS  Google Scholar 

  • Eby, J. E.; Sato, H.; Sirbasku, D. A. Apotransferrin stimulation of thyroid hormone dependent rat pituitary tumor cell growth in serum-free chemically defined medium: role of Fe(III) chelation. J. Cell. Physiol. 156:588–600; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Eckert, R. L.; Katzenellenbogen, B. S. Effects of estrogens and antiestrogens on estrogen receptor dynamics and the induction of progesterone receptor in MCF-7 human breast cancer cells. Cancer Res. 42:139–144; 1982.

    PubMed  CAS  Google Scholar 

  • Edwards, D. P.; Adams, D. J.; Savage, N., et al. Estrogen induced synthesis of specific proteins in human breast cancer cells. Biochem. Biophys. Res. Commun. 93:804–812; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Engel, L. W.; Young, N. A.; Tralka, T. S., et al. Establisment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res. 38:3352–3364; 1978.

    PubMed  CAS  Google Scholar 

  • Glover, J. F.; Irwin, J. T.; Darbre, P. D. Interaction of phenol red with estrogenic and antiestrogenic action on growth of human breast cancer cells ZR-75-1 and T-47-D. Cancer Res. 48:3693–3697; 1988.

    PubMed  CAS  Google Scholar 

  • Grady, L. H.; Nonneman, D. J.; Rottinghaus, G. E., et al. pH-dependent cytoxicity of contaminants of phenol red for MCF-7 breast cancer cells. Endocrinology 129:3321–3330; 1991.

    PubMed  CAS  Google Scholar 

  • Haug, E. Progesterone suppression of estrogen-stimulated prolactin secretion and estrogen receptor levels in rat pituitary cells. Endocrinology 104: 429–437; 1979.

    PubMed  CAS  Google Scholar 

  • Haug, E.; Gautvik, K. M. Effects of sex steroids on prolactin secreting rat pituitary cells in culture. Endocrinology 99:1482–1489; 1976.

    PubMed  CAS  Google Scholar 

  • Horoszewicz, J. S.; Leong, S. S.; Kawinski, E., et al. LNCaP model of human prostatic carcinoma. Cancer Res. 43:1809–1818; 1983.

    PubMed  CAS  Google Scholar 

  • Hopp, L.; Bunker, C. H. Lipophilic impurity of phenol red is a potent cation transport modulator. J. Cell. Physiol. 157:594–602; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hopp, L.; Bunker, C. H.; Day, B. W. Quinine sensitive changes in the cellular Na+ and K+ homeostasis of COS-7 cells caused by a lipophilic phenol red impurity. In Vitro Cell. Dev. Biol. 31:352–360; 1995.

    CAS  Google Scholar 

  • Horwitz, K. B.; Zava, D. T.; Thilagar, A. K., et al. Steroid receptor analysis of nine human breast cancer cell lines. Cancer Res. 38:2434–2437; 1978.

    PubMed  CAS  Google Scholar 

  • Huff, K. K.; Knabbe, C.; Lindsey, R., et al. Multihormonal, regulation of insulin-like growth factor-I-related protein in MCF-7 human breast cancer cells. Mol. Endocrinol. 2:200–208; 1988.

    PubMed  CAS  Google Scholar 

  • Ikeda, T.; Liu, Q.-F.; Danielpour, D., et al. Identification of estrogen-inducible growth factors (estromedins) for rat and human mammary tumor cells in culture. In Vitro 18:961–979; 1982.

    PubMed  CAS  Google Scholar 

  • Karey, K. P.; Sirbasku, D. A. Differential responsiveness of the human breast cancer cell lines MCF-7 and T47-D to growth factors and 17β-estradiol. Cancer Res. 48:4083–4092; 1988.

    PubMed  CAS  Google Scholar 

  • Katzenellenbogen, B. S. Estrogen receptors: bioactivities and interactions with cell signaling pathways. Biol. Reprod. 54:287–293; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Katzenellenbogen, B. S.; Kendra, K. L.; Norman, M. J., et al. Proliferation, hormonal responsiveness, and estrogen receptor content of MCF-7 human breast cancer cells grown in short-term and long-term absence of estrogens. Cancer Res. 47:4355–4360; 1987.

    PubMed  CAS  Google Scholar 

  • Katzenellenbogen, B. S.; Norman, M. J.; Eckert, R. L., et al. Bioactivities, estrogen receptor interactions, and plasminogen activator-inducing activities of tamoxifen and hydroxy-tamoxifen isomers in MCF-7 human breast cancer cells. Cancer Res. 44:112–119; 1984.

    PubMed  CAS  Google Scholar 

  • Keydar, I.; Chen, I.; Karby, S., et al. Establisment of a cell line of human breast carcinoma origin. Eur. J. Cancer 15:659–670; 1979.

    PubMed  CAS  Google Scholar 

  • Kirkland, W. L.; Sorrentino, J. M.; Sirbasku, D. A. Control of cell growth. III. Demonstration of the direct mitogenic effect of thyroid hormones on an estrogen-dependent rat pituitary tumor cell line. J. Natl. Cancer Inst. 56:1159–1164; 1976.

    PubMed  CAS  Google Scholar 

  • Knabbe, C.; Lippman, M. E.; Wakefield, L. M., et al. Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48:417–428; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Kragh-Hansen, U. Effects of aliphatic fatty acids on the binding of phenol red to human serum albumin. Biochem. J. 195:603–613; 1981.

    PubMed  CAS  Google Scholar 

  • Kragh-Hansen, U. Relations between high-affinity binding sites of markers for binding regions on human serum albumin. Biochem. J. 225:629–638; 1985.

    PubMed  CAS  Google Scholar 

  • Kragh-Hansen, U. Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin, and other ligands. Mol. Pharmacol. 34:160–171; 1988.

    PubMed  CAS  Google Scholar 

  • Leland, F. E.; Danielpour, D.; Sirbasku, D. A. Studies of the endocrine, paracrine, and autocrine control of mammary tumor cell growth. In: Sato, G. H.; Pardee, A. B.; Sirbasku, D. A., ed. Growth of cells in hormonally defined media. Cold Spring Harbor Conferences on Cell Proliferation, vol. 9. Cold Spring Harbor Laboratory; 1982:741–750.

  • Leung, C. K. H.; Shiu, R. P. C. Required presence of both estrogen and pituitary factors for the growth of human breast cancer cells in athymic nude mice. Cancer Res. 41:546–551; 1981.

    PubMed  CAS  Google Scholar 

  • Liehr, J. G.; Fang, W. F.; Sirbasku, D. A., et al. Carcinogenicity of catechol estrogens in Syrian hamsters. J. Steroid Biochem. 24:353–356; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Liehr, J. G.; Sirbasku, D. A. Estrogen-dependent kidney tumors. In: Taub, M., ed. Tissue culture of epithelial cells. New York: Plenum Press; 1985:205–234.

    Google Scholar 

  • Liehr, J. G.; Sirbasku, D. A.; Jurka, E., et al. Inhibition of estrogen-induced renal carcinogenesis in male Syrian hamsters by tamoxifen without decrese in DNA adduct levels. Cancer Res. 48:779–783; 1988.

    PubMed  CAS  Google Scholar 

  • Lippman, M. E.; Bolan, G. Oestrogen-responsive human breast cancer in long term tissue culture. Nature (London) 256:592–593; 1975.

    Article  CAS  Google Scholar 

  • Lippman, M.; Bolan, G.; Huff, K. The effects of estrogen and antiestrogens in hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 36:4595–4601; 1976a.

    PubMed  CAS  Google Scholar 

  • Lippman, M.; Bolan, G.; Monaco, M. E., et al. Model systems for the study of estrogen action in tissue culture. J. Steroid Biochem. 7:1045–1051; 1976b.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. C.; Sanfilippo, B.; Perroteau, L. et al. Expression of transforming growth factor α (TGFα) in differentiated rat mammary tumors: estrogen induction of TGFα production. Mol. Endocrinol. 1:683–692; 1987.

    PubMed  CAS  Google Scholar 

  • Lykkesfeld, A. E.; Briand, P. Indirect mechanism of oestradiol stimulation of cell proliferation of human breast cancer cell lines. Br. J. Cancer 53:29–35; 1986.

    Google Scholar 

  • McKeehan, W. L.; Barnes, D.; Reid, L., et al. Frontiers in mammalian cell culture. In Vitro Cell. Dev. Biol. 26:9–23; 1990.

    PubMed  CAS  Google Scholar 

  • Moo, J. B.; Stancel, G. M.; Heindel, J. J., et al. Effects of estradiol on the cell cycle of a rat pituitary tumor cell line containing estrogen receptors. In: Sato, G. H.; Pardee, A. B.; Sirbasku, D. A., ed. Growth of cells in hormonally defined media. Cold Spring Harbor Conferences on Cell Proliferation, vol. 9. Cold Spring Harbor Laboratory; 1982: 429–444.

  • Moreno-Cuevas, J. E.; Sirbasku, D. A. Estrogen mitogenic action. I. Demonstration of estrogen-dependent MTW9/PL2 carcinogen-induced rat mammary tumor cell grwoth in serum supplemented culture and technical implications. InVA 36(7):410–427; 2000.

    CAS  Google Scholar 

  • Morisset, M.; Capony, F.; Rochefort, H. The 52-kDa estrogen-induced protein secreted by MCF-7 cells is a lysosomal acidic protease. Biochem. Biophys. Res. Commun. 138:102–109; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, L. C.; Murphy, L. J.; Dubik, D., et al. Epidermal growth factor expression in human breast cancer cells: regulation by progestins. Cancer Res. 48:4555–4560; 1988.

    PubMed  CAS  Google Scholar 

  • Murphy, L. J.; Ghahary, A. Uterine insulin-like growth factor-1: regulation of expression and its role in estrogen-induced uterine proliferation. Endocrine Rev. 11:443–453; 1990.

    CAS  Google Scholar 

  • Murphy, L. J.; Murphy, L. C.; Friesen, H. G. A role for the insulin-like growth factors as estromedins in the rat uterus. Trans. Assoc. Am. Physicians 100:204–214; 1987.

    PubMed  CAS  Google Scholar 

  • Natoli, C.; Sica, G.; Natoli, V., et al. Two new estrogen-supersensitive variants of the MCF-7 human breast cancer cell line. Breast Cancer Res. Treat. 3:23–32; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, K.; Sato, N.; Sasaki, H., et al. Effect of albumin on the absorption of phenol red, bromphenol blue and bromosulphonphthalein as model drugs from the liver surface membrane in rats. Biol. Pharm. Bull. 18: 1548–1550; 1995.

    PubMed  CAS  Google Scholar 

  • Ogasawara, M.; Sirbasku, D. A. A new serum-free method of measuring growth factor activities for human breast cancer cells in culture. In Vitro Cell. Dev. Biol. 24:911–920; 1988.

    PubMed  CAS  Google Scholar 

  • Osborne, C. K.; Coronado, E. B.; Kitten, I. J., et al. Insulin-like growth factor-II (IGF-II): a potential autocrine/paracrine growth factor for human breast cancer acting via the IGF-I receptor. Mol. Endocrinol. 3:1701–1709; 1989.

    PubMed  CAS  Google Scholar 

  • Osborne, C. K.; Hobbs, K.; Clark, G. M. Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Res. 45:584–590; 1985.

    PubMed  CAS  Google Scholar 

  • Rajendran, K. G.; Lopez, T.; Parikh, I. Estrogenic effect of phenol red in MCF-7 cells is achieved through activation of estrogen receptor by interacting with a site distinct from the steroid binding site. Biochem. Biophys. Res. Commun. 142:724–731; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Richard, D. E.; Bernier, S.; Boulay, G., et al. Selective interaction of chemical dyes with inositol 1,4,5-trisphosphate recognition sites. Can. J. Physiol. Pharmacol. 72:174–181; 1994.

    PubMed  CAS  Google Scholar 

  • Riss, T. L.; Ogasawara, M.; Karey, K. P., et al. Use of serum-free hormonally defined media to evaluate the effects of growth factors and inhibitors on proliferation of estrogen-responsive mammary and pituitary tumor cells in culture. J. Tissue Cult. Methods. 10:133–150; 1986.

    Article  CAS  Google Scholar 

  • Riss, T. L.; Sirbasku, D. A. Rat pituitary tumor cells in serum-free culture. II. Serum factor and thyroid hormone requirements for estrogen-responsive growth. In Vitro Cell. Dev. Biol. 25:136–142; 1989.

    PubMed  CAS  Google Scholar 

  • Rochefort, H. Nonteroidal antiestrogens are estrogen-receptor-targeted growth inhibitors that can act in the absence of estrogens Horm. Res. 28:196–201; 1987.

    PubMed  CAS  Google Scholar 

  • Rochefort, H.; Capony, F.; Garcia, M., et al. Estrogen-induced lysosomal proteases secreted by breast cancer cells: a role in carcinogenesis? J. Cell Biochem. 35:17–29; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sato, G. H.; Pardee, A. B.; Sirbasku, D. A. ed. Growth of cells in hormonally defined media. Cold Spring Harbor Conferences on Cell Proliferation, vol. 9, books A and B. Cold Spring Harbor Laboratory; 1982:3–1214.

  • Sato, H.; Eby, J. E.; Sirbasku, D. A. Iron is deleterious to hormone-responsive pituitary cell growth in serum-free defined medium. In Vitro Cell. Dev. Biol. 27A:599–602; 1991.

    PubMed  CAS  Google Scholar 

  • Sato, H.; Eby, J. E.; Sirbasku, D. A. Apotransferrins from several species promote thyroid hormone-dependent rat pituitary tumor cell growth in iron-restrieted serum-free defined culture. Mol. Cell. Endocrinol. 83:239–251; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Schatz, R.; Soto, A. M.; Sonnenschein, C. Estrogen-induced cell multiplication: direct or indirect effect on rat uterine cells? Endocrinology 115: 501–506; 1984.

    PubMed  CAS  Google Scholar 

  • Schatz, R. W.; Soto, A. M.; Sonnenschein, C. Effects of interaction between estradiol-17β and progesterone on proliferation of cloned breast cancer cells (MCF-7 and T47D). J. Cell Physiol. 124:386–390; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Seibert, K.; Shafie, S. M.; Triche, T. J., et al. Clonal variation of MCF-7 breast cancer cells in vitro and in athymic mice. Cancer Res. 43:2223–2239; 1983.

    PubMed  CAS  Google Scholar 

  • Shafie, S. M. Estrogen and growth of breast cancer. New evidence suggests indirect action. Science (Wash DC):701–702; 1980.

  • Sheikh, M. I.; Gerdes, U. Interaction of phenolsulphonphthalein dyes with rabbit plasma and rabbit serum albumin. Arch. Int. Physiol. Biochim. 86:613–623; 1978.

    PubMed  CAS  Google Scholar 

  • Sirbasku, D. A. Estrogen-induction of growth factors specific for estrogen responsive mammary, pituitary and kidney tumor cells. Proc. Natl. Acad. Sci. USA 75:3786–3790; 1978a.

    Article  PubMed  CAS  Google Scholar 

  • Sirbasku, D. A. Hormone-responsive growth in vitro of a tissue cultured cell line established from the MT-W9A rat mammary tumor. Cancer Res. 38:1154–1165; 1978b.

    PubMed  CAS  Google Scholar 

  • Sirbasku, D. A. New concepts in control of estrogen-responsive tumor growth. In: Pike, M. C.; Siiteri, P. K.; Welsch, C. W., ed. Banbury Report, vol. 8. Hormones and breast cancer. Cold Spring Harbor Laboratory; 1981:425–443.

  • Sirbasku, D. A.; Benson, R. H. Estrogen-inducible growth factors that may act as mediators (estromedins) of estrogen promoted tumor cell growth. In: Sato, G. H.; Ross, R., ed. Hormones and cell culture. Cold Spring Harbor Conferences on Cell Proliferation, vol. 6. Cold Spring Harbor Laboratory; 1979:477–497.

  • Sirbasku, D. A.; Kirkland, W. L. Control of cell growth. IV. Growth properties of a new cell lines established from an estrogen-dependent tumor of the Syrian hamster. Endocrinology 98:1260–1272; 1976.

    PubMed  CAS  Google Scholar 

  • Sirbasku, D. A.; Leland, F. E. Estrogen-inducible growth factors: proposal of new mechanisms of estrogen-promoted tumor cell growth. In: Litwack, G., ed. Biochemical actions of hormones, vol. 9. Orlando: Academic Press; 1982:115–140.

    Google Scholar 

  • Sirbasku, D. A.; Moreno-Cuevas, J. E. Estrogen mitogenic action. II. Negative regulation of the steroid hormone-responsive growth of cell lines derived from human and rodent target tissue tumors and conceptual implications. InVA 36(7):428–446; 2000.

    CAS  Google Scholar 

  • Sirbasku, D. A.; Moreno-Cuevas, J. E.; Walterscheid, J. P. Serum factor regulation of estrogen responsive mammary tumor cell growth. In: Proceedings of the 1997 Meeting of the Department of Defense Breast Cancer Research Program: An Era of Hope. Washington, DC: 739–740; 1997.

  • Sonnenschein, C.; Soto, A. M. But … are estrogens per se growth promoting hormones. J. Natl. Cancer Inst. 64:211–214; 1980.

    PubMed  CAS  Google Scholar 

  • Sorrentino, J. M.; Kirkland, W. L.; Sirbasku, D. A. Control of cell growth. I. Estrogen-dependent growth in vivo of a rat pituitary tumor cell line. J. Natl. Cancer Inst. 56:1149–1154; 1976.

    PubMed  CAS  Google Scholar 

  • Soto, A. M.; Bass, J. C.; Sonnenschein, C. Proliferation behavior of the cloned Syrian hamster tumor cells H301. Cancer Res. 48:3676–3680; 1988.

    PubMed  CAS  Google Scholar 

  • Soto, A. M.; Justicia, H.; Wray, J. W., et al. P-Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene. Environ. Health Perspect. 92:167–173; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Soto, A.; Murai, J. T.; Siiteri, P. K., et al. Control of cell proliferation: evidence for negative control on estrogen-sensitive T47D human breast cancer cells. Cancer Res. 46:2271–2275; 1986.

    PubMed  CAS  Google Scholar 

  • Soto, A. M.; Sonnenschein, C. Mechanism of estrogen action cellular proliferation: evidence for an indirect and negative control on cloned breast tumor cells. Biochem. Biophys. Res. Commun. 122:1097–1103; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Soto, A. M.; Sonnenschein, C. The roles of estrogens on the proliferation of human breast tumor cancer cells (MCF-7). J. Steroid Biochem. 23:87–94; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Soto, A. M.; Sonnenschein, C. Control of cell proliferation of estrogen sensitive cells: the case for negative control. Endocr. Rev. 8:44–52; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Soule, H. D.; McGrath, C. M. Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Lett. 10:177–189; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Soule, H. D.; Vasquez, A.; Long, A., et al. A human breast cell line from a pleural effusion derived from a breast carcinoma. J. Natl. Cancer Inst. 51:1409–1413; 1973.

    PubMed  CAS  Google Scholar 

  • Sporn, M. B.; Todaro, G. J. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303:878–880; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Strobl, J. S.; Lippman, M. E. Prolonged retention of estradiol by human breast cancer cells in tissue culture. Cancer Res. 39:3319–3327; 1979.

    PubMed  CAS  Google Scholar 

  • Tashjian, A. H. Clonal strains of hormone-producing pituitary cells. Methods Enzymol. 58:527–535; 1979.

    Article  PubMed  Google Scholar 

  • Tashjian, A. H., Jr.; Bancroft, F. C.; Levine, L. Production of both prolactin and growth hormone by clonal strains of rat pituitary tumor cells. Differential effects of hydrocortisone and tissue extracts. J. Cell. Biol. 47:61–70; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Tashjian, A. H., Jr.; Yasumura, Y.; Levine, L., et al. Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82:342–352; 1968.

    PubMed  CAS  Google Scholar 

  • Veldscholte, J.; Ris-Stalpers, C.; Kuiper, G. G. J. M., et al. A mutation in the binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173:534–540; 1990a.

    Article  PubMed  CAS  Google Scholar 

  • Veldscholte, J.; Voorhorst-Ognik, M. M.; Dolt-de-Vries, J., et al. Unusual specificity of the androgen receptor in human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochem. Biophys. Res. Commun. 1052:187–194; 1990b.

    CAS  Google Scholar 

  • Vignon, F.; Bouton, M. M.; Rochefort, H. Antiestrogens inhibit the mitogenic effect of growth factors on breast cancer cells in the total absence of estrogens. Biochem. Biophys. Res. Commun. 146:1502–1508; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Vignon, F.; Capony, F.; Chambon, M., et al. Autocrine growth stimulation of the MCF-7 breast cancer cells by the estrogen-regulated 52K protein. Endocrinology 118:1537–1545; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Vignon, F.; Terqui, M.; Westley, B., et al. Effects of plasma estrogen sulfates in mammary cancer cells. Endocrinology 106:1079–1086; 1980.

    PubMed  CAS  Google Scholar 

  • Welshons, W. V.; Wolf, M. F.; Murphy, C. S., et al. Estrogenic activity of phenol red. Mol. Cell. Endocrinol. 57:169–178; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Wiese, T. E.; Kral, L. G.; Dennis, K. E., et al. Optimization of estrogen growth response in MCF-7 cells. In Vitro Cell. Dev. Biol. 28A:595–602; 1992.

    PubMed  CAS  Google Scholar 

  • Zugmaier, G.; Knabbe, C.; Fritsch, C., et al. Tissue culture conditions determine the effects of estrogen and growth factors on the anchorage independent growth of human breast cancer cell lines. J. Steroid Biochem. Mol. Biol. 39:681–685; 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Sirbasku.

Additional information

A red herring is defined as “a diverting of attention from the main subject by introducing some irrelevant topic.” This definition is quoted from the Funk & Wagnalls Standard Desk Dictionary, DB, a company of the Dun & Bradstreet Corporation, 1981 Deluxe Edition, copyright © 1980 by Lippincott & Crowell, Philadelphia, Pennsylvania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Cuevas, J.E., Sirbasku, D.A. Estrogen mitogenic action. III. Is phenol red a “red herring”?. In Vitro Cell.Dev.Biol.-Animal 36, 447–464 (2000). https://doi.org/10.1290/1071-2690(2000)036<0447:EMAIIP>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0447:EMAIIP>2.0.CO;2

Key words

Navigation